Quantitative relationship between visibility and mass concentration of PM2.5 in Beijing.

نویسندگان

  • Jing-Li Wang
  • Yuan-Hang Zhang
  • Min Shao
  • Xu-Lin Liu
  • Li-Min Zeng
  • Cong-Lan Cheng
  • Xiao-Feng Xu
چکیده

The pollution of particulate matter less than 2.5 microm (PM2.5) is a serious environmental problem in Beijing. The annual average concentration of PM2.5 in 2001 from seasonal monitor results was more than 6 times that of the U.S. national ambient air quality standards proposed by U.S. EPA. The major contributors to mass of PM2.5 were organics, crustal elements and sulfate. The chemical composition of PM2.5 varied largely with season, but was similar at different monitor stations in the same season. The fine particles (PM2.5) cause atmospheric visibility deterioration through light extinction. The mass concentrations of PM2.5 were anti-correlated to the visibility, the best fits between atmospheric visibility and the mass concentrations of PM2.5 were somehow different: power in spring, exponential in summer, logarithmic in autumn, power or exponential in winter. As in each season the meteorological parameters such as air temperature and relative humidity change from day to day, probably the reason of above correlations between PM2.5 and visibility obtained at different seasons come from the differences in chemical compositions of PM2.5.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fine particulate (PM2.5) dynamics during rapid urbanization in Beijing, 1973–2013

PM2.5 has been given special concern in recent years when the air quality monitoring station started recording. However, long-term PM2.5 concentration dynamic analysis cannot be taken with the limited observations. We therefore estimated the PM2.5 concentration using meteorological visibility data in Beijing. We found that 71 ± 17% of PM10 were PM2.5, which contributed to visibility impairment ...

متن کامل

Characterizing the Indoor-Outdoor Relationship of Fine Particulate Matter in Non-Heating Season for Urban Residences in Beijing

OBJECTIVE Ambient fine particulate matter (PM2.5) pollution is currently a major public health concern in Chinese urban areas. However, PM2.5 exposure primarily occurs indoors. Given such, we conducted this study to characterize the indoor-outdoor relationship of PM2.5 mass concentrations for urban residences in Beijing. METHODS In this study, 24-h real-time indoor and ambient PM2.5 mass conc...

متن کامل

PM2.5 Chemical Compositions and Aerosol Optical Properties in Beijing during the Late Fall

Daily PM2.5 mass concentrations and chemical compositions together with the aerosol optical properties were measured from 8–28 November 2011 in Beijing. PM2.5 mass concentration varied from 15.6–237.5 μg·m−3 and showed a mean value of 111.2 ± 73.4 μg·m−3. Organic matter, NH4NO3 and (NH4)2SO4 were the major constituents of PM2.5, accounting for 39.4%, 15.4%, and 14.9% of the total mass, respecti...

متن کامل

Effects of Meteorological Conditions on PM2.5 Concentrations in Nagasaki, Japan

The fine particulate matter (PM2.5) problem has attracted much scientific and public attention, due to its effects on visibility, human health, and global climate. There are three factors that have important effect on PM2.5 mass concentration: domestic pollutant emission sources, external sources outside of the country, and the meteorological conditions. Nagasaki is a coastal prefecture located...

متن کامل

Study of PBLH and Its Correlation with Particulate Matter from One-Year Observation over Nanjing, Southeast China

The Planetary Boundary Layer Height (PBLH) plays an important role in the formation and development of air pollution events. Particulate Matter is one of major pollutants in China. Here, we present the characteristics of PBLH through three-methods of Lidar data inversion and show the correlation between the PBLH and the PM2.5 (PM2.5 with the diameter <2.5 μm) in the period of December 2015 thro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of environmental sciences

دوره 18 3  شماره 

صفحات  -

تاریخ انتشار 2006